- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Fall 2024 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University - High School Programming Contests 2024
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
Scientists and engineers rely more than ever on computer modeling and simulation to guide their experimental and design work. The infrastructure that supports this activity depends critically on the development of new numerical algorithms that are reliable, efficient, and scalable. "Large N" is the hallmark of modern, data-intensive scientific computing and it is a common thread that unifies departmental research in numerical linear algebra, optimization, and partial differential equations.
Faculty and Researchers
David Bindel works on numerical linear algebra, numerical methods for data science, and simulating microelectromechanical systems and fusion plasmas. His research involves software design, mathematical analysis and physical modeling.
Anil Damle works on the development of fast algorithms in applied and computational mathematics that exploit structure coming from underlying physical or statistical models. This includes work in the areas of computational quantum chemistry, numerical linear algebra, and spectral clustering.
Giulia Guidi works in the field of high-performance computing for large-scale computational sciences (in particular, computational biology). Her research involves the development of algorithms and software infrastructures on parallel machines to accelerate data processing without sacrificing programming productivity and to make high-performance computing more accessible.
Applied Mathematics
The scientific computing group is also active in the Applied Mathematics Ph.D. program, which is part of Cornell's Center for Applied Mathematics. Prospective Ph.D. applicants interested in the mathematical aspects of scientific computing may wish to consider that graduate field as well.