- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Fall 2024 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University - High School Programming Contests 2024
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
AI for social impact: Results from deployments for public health and conservation (via Zoom)
Abstract: With the maturing of AI and multiagent systems research, we have a tremendous opportunity to direct these advances towards addressing complex societal problems. I will focus on domains of public health and conservation, and address one key cross-cutting challenge: how to effectively deploy our limited intervention resources in these problem domains. I will present results from work around the globe in using AI for challenges in public health such as Maternal and Child care interventions, HIV prevention, and in conservation such as endangered wildlife protection. Achieving social impact in these domains often requires methodological advances. To that end, I will highlight key research advances in multiagent reasoning and learning, in particular in, restless multiarmed bandits, influence maximization in social networks, computational game theory and decision-focused learning. In pushing this research agenda, our ultimate goal is to facilitate local communities and non-profits to directly benefit from advances in AI tools and techniques.
Bio: Milind Tambe is Gordon McKay Professor of Computer Science and Director of Center for Research in Computation and Society at Harvard University; concurrently, he is also Principal Scientist and Director "AI for Social Good" at Google Research. Prof. Tambe's work focuses on advancing AI and multiagent systems for public health, conservation & public safety, with a track record of building pioneering AI systems for social impact. He is recipient of the IJCAI John McCarthy Award, AAMAS ACM Autonomous Agents Research Award, AAAI Robert S. Engelmore Memorial Lecture Award, and he is a fellow of AAAI and ACM. He is also a recipient of the INFORMS Wagner prize for excellence in Operations Research practice and Rist Prize from MORS (Military Operations Research Society). For his work on AI and public safety, he has received Columbus Fellowship Foundation Homeland security award and commendations and certificates of appreciation from the US Coast Guard, the Federal Air Marshals Service and airport police at the city of Los Angeles.